
Introduction
When data scientists create interactive dashboards they are likely to 
approach the dashboard as an interactive version of a traditional static 
analysis, and as a general rule many data scientists may not have 
formal training in computer science or be held to, or aware, of the 
formal approach taken when an application is classed as Software as a 
Medical Device (FDA, 2018). 

To address these gaps, Roche / Genentech data scientists worked with 
an engineering team to understand how we can improve the quality of 
our applications in terms of their ability to reliably return insights, 
ensure interactive results can be easily replicated for static studies, and 
ensure users are always aware of the limitations of an insight, and the 
provenance of the data it was formed from. 

By learning from common practices applied in software development 
like loosely coupled architecture (Ganesh, 2005), and assertions 
(Boehm, 1975), and our own experiences, we propose a set principles 
that can be immediately implemented by data scientists without a 
background in computer science, and explain how these principles 
were applied in a case study. 

Case study in the development of a framework for quality and 
reproducibility in inner-sourced packages and self-service analytic 
dashboards to accelerate common study types
James Black, PhD1, Nayan Chaudhary, MSc3, Adam J. Forys ́, PhD2, Sriraman Madhavan, MSc3, Matthew Secrest, MSc*3, Kamil Wais, PhD2

1PD Data Science, Roche; 27N Consulting; 3PD Data Science, Genentech. *Presenting author. All authors contributed equally. 

Case study
By applying these principles to a common study data type, the 
estimation of duration of treatment in real world settings using routinely 
collected data, we were able to accelerate time to deliver study results 
from months to days, while improving robustness and standardization 
via well documented and tested code. 

As shown in Figure 1, in this case study we wrapped repeated study 
code into a robust and unit tested R package (Code has value), which 
contained all scientific business logic (Separate logic from the user 
interface). 

We then created a de-coupled interactive user interface via R-Shiny 
(Democratise access to analytics). Within Shiny we controlled 
inputs, to ensure the underlying R package was used within a valid 
scope (Assertively limit user inputs in dashboards). 

In addition to logic required for the final app, the R package contained 
vignettes that defined and provided documentation metadata for 
versioned cohorts. These versioned cohorts, and the accompanying 
metadata, were then ingested by the app (Be verbose and specific 
on input cohorts). 

The manifesto
The following 5 point manifesto are the principles we defined as the 
base principles we apply to interactive applications to allow us to 
develop more robust applications, that behave in known ways and 
produce reproducible results.

The use of ad-hoc code within a study should be minimized, and a 
culture promoted of collaboration on pan-study code in documented 
packages for reuse. Unit tests are ideally written at function creation, 
and reviewed and expanded with new use cases. 

Aided by the consolidation of code into packages, less technical users 
should be given access to well documented packages to promote 
guided analyses, as well as dashboards considered for fully self-service 
interaction. 

Publish cohort derivation code as user readable markdown vignettes 
with descriptive statistics and assumption checks. 

Developers should ensure that variables exposed for manipulation in 
the app can be varied without compromising validation. 

Scientific logic should be separated from visualization code. This 
loosely coupled approach improves the robustness of the system by 
making it easier to isolate, test and document any logic applied to the 
data. 

Code has value

Democratize access to analytics

Be verbose and specific on input cohorts

Assertively limit user inputs in dashboards

Separate logic from the user interface

Discussion
These principles provided a mechanism to improve the reliability of our 
code, and had an important secondary effect of providing a clear 
framework to communicate with stakeholders and between data 
scientists steps taken to improve quality and reproducibility of internal 
study dashboards. In our experience, following all the above steps led 
to high quality & high fidelity self-service analytics. However there's a 
cost in terms of time & resources. Hence there should always be 
constant dialogue on when a certain set of repeated analysis warrants 
a need to be converted into a dashboard.

We hope to continue to refine, improve and continuously simplify this 
manifesto as we apply it to all of our internal dashboards.

References

FDA, 2018: https://www.fda.gov/medical-devices/digital-health-center-
excellence/software-medical-device-samd
Ganesh, 2005: Web services, enterprise digital dashboards and shared data 
services: a proposed framework; 10.1109/ECOWS.2005.29
Boehm, 1975:  Some experience with automated aids to the design of large-scale 
reliable software; 10.1145/800027.808430

Figure 1. Case study architecture with formal separation of scientific  logic from the user interface.

Email us

https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd

